Click & Collect
from 2 Hours*
Last Christmas
delivery dates
Free UK Standard Delivery On all orders over £25 Order in time for Christmas 19th December 2nd Class |
21st December by 3pm 1st Class
Free Click & Collect to shops From 2 hours after you order*
Topics in Control Theory - Oberwolfach Seminars 22 (Hardback)
  • Topics in Control Theory - Oberwolfach Seminars 22 (Hardback)

Topics in Control Theory - Oberwolfach Seminars 22 (Hardback)

(author), (author), (author)
Hardback 168 Pages / Published: 01/10/1993
  • We can order this from the publisher

UK delivery within 3-4 weeks

  • This item has been added to your basket
One of the key concerns in modern control theory is the design of steering strategies. The implementation of such strategies is done by a regulator. Presented here is a self-contained introduction to the mathematical background of this type of regulator design. The topics selected address the matter of greatest interest to the control community, at present, namely, when the design objective is the reduction of the influence of exogeneous disturbances upon the output of the system. In a first scenario the disturbance signal is regarded as a deterministic time series with known dynamics but unknown parameters. The design objective is then the asymptotic disturbance compensation. In a second scenario, no information about the disturbance signal is available apart from some bounds. Here, in an H-approach, control strategies are worked out which will prove efficient for all such disturbances. The intention of this book is to present ideas and methods on such a level that the beginning graduate student will be able to follow current research. New results are included, especially for nonlinear control systems, and as a service to the reader, an extensive appendix presents topics from linear algebra, invariant manifolds and calculus of variations, information which is hardly to be found in standard textbooks. Contents: Introduction * The problem of output regulation * Introduction * Problem statement * Output regulation via full information * Output regulation via full error feedback * A particular case * Well-posedness and robustness * The construction of a robust regulator * Disturbance attenuation via H-methods * Introduction * Problem statement * A characterization of the L2-gain of a linear system * Disturbance attenuation via full information * Disturbance attenuation via measured feedback * Full information regulators * Problem statement * Time-dependent control strategies * Examples * Time-independent control strategies * The local case * Nonlinear observers * Problem statement * Time-dependent observers * Error feedback regulators * Examples * Nonlinear H-techniques * Introduction * Construction of the saddle-point * The local scenario * Disturbance attenuation via linearization * Matrix equations * Linear matrix equations * Algebraic Riccati equations * Invariant manifolds * Existence theorem * Outflowing manifolds * Asymptotic phase * Convergence for T (1) * A special case * Dichotomies and Lyapunov functions * Hamilton-Jacobi-Bellman-Isaacs equation * Introduction * Method of characteristics * The equation of Isaacs * The Hamiltonian version of Isaacs' equation * Bibliography

Publisher: Birkhauser Verlag AG
ISBN: 9783764329532
Number of pages: 168
Weight: 940 g
Dimensions: 244 x 170 x 11 mm
Edition: 1993 ed.


"The book would be a useful starting point for anybody wishing to carry out research on this central issue in control theory."

--Short Book Reviews of the ISI

You may also be interested in...

Starting Electronics
Added to basket
Circuit Analysis For Dummies
Added to basket
Arduino in Easy Steps
Added to basket
RF Circuit Design
Added to basket
Temporary Power Systems
Added to basket
Encyclopedia of Electronic Components
Added to basket
Electronics All-in-One For Dummies, UK Edition
Added to basket
Encyclopedia of Electronic Components V3
Added to basket
Electronics For Dummies, UK Edition
Added to basket
Make: More Electronics
Added to basket

Please sign in to write a review

Your review has been submitted successfully.