Theory of Elasticity (Paperback)
  • Theory of Elasticity (Paperback)
zoom

Theory of Elasticity (Paperback)

(author)
£179.99
Paperback 716 Pages / Published: 07/10/2014
  • We can order this

Usually dispatched within 3 weeks

  • This item has been added to your basket
TheTheoryofelasticitystudiesthebehaviorofthosebodiesthatrecovertheiri- tial state when the causes which produce deformations are removed. Its results constitutethefoundationsofthe Theory of structuresandthenareofmaximum importanceforengineers. The Theory of elasticity moves freely within an uni ed mathematical fra- workthatprovidestheanalyticaltoolsforcalculatingstressesanddeformationsin astrainedelasticbody. Alltheelasticproblemscanbeexactlyanalyzedemploying theclassicalMathematicalanalysis,withtheexceptionoftheunilateralproblems forwhichtheemploymentoftheFunctionalanalysisismandatory. TheTheoryofelasticitywasfoundedbythefamousmathematicianCauchyinthe eighteenth-century. Duringitshistoricaldevelopmentthisscienti csectorproposed tothemathematiciansvariousproblemsthathavecontributedorentirelygenerated thedevelopmentofcomplexmathematicaltheories,astheVariationalcalculusand theFiniteelementmethod. Thematteranalyzedinthisbookis -three-dimensional problems (Chap. 1), and particularly the problem of Saint Venant(Chap. 1), -two-dimensionalproblems,aspanels,plates,shells(Chap. 3), -one-dimensionalproblems,asropes,beams,arches(Chap. 4), -thermalstressproblems(Chap. 5), -stabilityproblems(Chap. 6), -anisotropicproblems,thatconstitutethebasictoolfortheanalysisofstructuresin compositematerial(Chap. 7), -nonlinearelasticproblems,as niteelasticityandunilateralproblems(Chap. 8). InthisbookIhaveconstantlykeptinmindthepracticalapplicationoftheth- reticalresults. SoIhavealwaystriedtogivetoengineers,inasimpleform,aclear indicationofthenecessaryfundamentalknowledgeoftheTheoryofelasticity. In thepastsometechniquesofcalculationweredevelopedforparticularelasticpr- lemsthatcannotbeorganizedinmathematicaltheoriesbutareextremelysimpleto apply. Suchtechnicaltheorieshavealwaysfurnishedresultsexperimentallyveri ed v vi Preface withgoodapproximationandthenamongthemIhavepresentedthosethatarestill usefultoolsofveri cationintheStructuraldesign. Throughouttheanalysisoftheelasticproblemsmyconstantfocushasbeento achievethemaximumclarityandbecauseofthisIhavesacri cedvariousbright discussions. Ihavedevelopedthetreatmentofthesubjectsinclassicalway,butto thelightofthemodernMathematicaltheoryoftheelasticityandwithmoreaccented relief to the connections with the Thermodynamics. Just for this, to give a clear justi cationofthefundamentalequationoftheThermoelasticityIhaveapplieda techniqueofanalysisproperoftheFluiddynamics. Howeverinthediscussionof theunilateralproblems,wheretheFunctionalanalysisiscompulsory,Ihaverelated indetailsthemathematicalaspectsofthetheoreticalanalysis. Roma,Italy AldoMaceri October2009 Contents 1 The Three-Dimensional Problem...1 1. 1 AnalysisofStrain...1 1. 1. 1 ComponentsofDisplacement...1 1. 1. 2 In nitesimalDeformation...2 1. 1. 3 ElongationandShearingStrain ...4 1. 1. 4 SmallDeformations...5 1. 1. 5 ComponentsofStrain ...9 1. 1. 6 PrincipalDirectionofStrain ...14 1. 1. 7 InvariantsofStrain ...21 1. 1. 8 PlaneStateofStrain...23 1. 1. 9 EquationsofCompatibility...24 1. 1. 10MeasurementofStrain ...25 1. 2 AnalysisofStress...27 1. 2. 1 StressVector...27 1. 2. 2 NormalStress-ShearingStress ...29 1. 2. 3 ComponentsofStress ...30 1. 2. 4 Symmetryof? -DifferentialEquations ofEquilibrium-Cauchy'sBoundaryConditions...31 1. 2. 5 SymmetryofStressVector...38 1. 2. 6 RelationsBetweenNormalorShearingStress andComponentsofStress...39 1. 2. 7 PrincipalDirectionofStress ...40 1. 2. 8 InvariantsofStress ...42 1. 2. 9 Mohr'sCircle...43 1. 2. 10Mohr'sPrincipalCircles ...57 1. 2. 11 DeterminationoftheMaximumNormalStress orShearingStressbytheMohr'anisotropicproblems,thatconstitutethebasictoolfortheanalysisofstructuresin compositematerial(Chap. 7), -nonlinearelasticproblems,as niteelasticityandunilateralproblems(Chap. 8). InthisbookIhaveconstantlykeptinmindthepracticalapplicationoftheth- reticalresults. SoIhavealwaystriedtogivetoengineers,inasimpleform,aclear indicationofthenecessaryfundamentalknowledgeoftheTheoryofelasticity. In thepastsometechniquesofcalculationweredevelopedforparticularelasticpr- lemsthatcannotbeorganizedinmathematicaltheoriesbutareextremelysimpleto apply. Suchtechnicaltheorieshavealwaysfurnishedresultsexperimentallyveri ed v vi Preface withgoodapproximationandthenamongthemIhavepresentedthosethatarestill usefultoolsofveri cationintheStructuraldesign. Throughouttheanalysisoftheelasticproblemsmyconstantfocushasbeento achievethemaximumclarityandbecauseofthisIhavesacri cedvariousbright discussions. Ihavedevelopedthetreatmentofthesubjectsinclassicalway,butto thelightofthemodernMathematicaltheoryoftheelasticityandwithmoreaccented relief to the connections with the Thermodynamics. Just for this, to give a clear justi cationofthefundamentalequationoftheThermoelasticityIhaveapplieda techniqueofanalysisproperoftheFluiddynamics. Howeverinthediscussionof theunilateralproblems,wheretheFunctionalanalysisiscompulsory,Ihaverelated indetailsthemathematicalaspectsofthetheoreticalanalysis. Roma,Italy AldoMaceri October2009 Contents 1 The Three-Dimensional Problem...1 1. 1 AnalysisofStrain...1 1. 1. 1 ComponentsofDisplacement...1 1. 1. 2 In nitesimalDeformation...2 1. 1. 3 ElongationandShearingStrain ...4 1. 1. 4 SmallDeformations...5 1. 1. 5 ComponentsofStrain ...9 1. 1. 6 PrincipalDirectionofStrain ...14 1. 1. 7 InvariantsofStrain ...21 1. 1. 8 PlaneStateofStrain...23 1. 1. 9 EquationsofCompatibility...24 1. 1. 10MeasurementofStrain ...25 1. 2 AnalysisofStress...27 1. 2. 1 StressVector...27 1. 2. 2 NormalStress-ShearingStress ...29 1. 2. 3 ComponentsofStress ...30 1. 2. 4 Symmetryof? -DifferentialEquations ofEquilibrium-Cauchy'sBoundaryConditions...31 1. 2. 5 SymmetryofStressVector...38 1. 2. 6 RelationsBetweenNormalorShearingStress andComponentsofStress...39 1. 2. 7 PrincipalDirectionofStress ...40 1. 2. 8 InvariantsofStress ...42 1. 2. 9 Mohr'sCircle...43 1. 2. 10Mohr'sPrincipalCircles ...57 1. 2. 11 DeterminationoftheMaximumNormalStress orShearingStressbytheMohr'TheTheoryofelasticitystudiesthebehaviorofthosebodiesthatrecovertheiri- tial state when the causes which produce deformations are removed. Its results constitutethefoundationsofthe Theory of structuresandthenareofmaximum importanceforengineers. The Theory of elasticity moves freely within an uni ed mathematical fra- workthatprovidestheanalyticaltoolsforcalculatingstressesanddeformationsin astrainedelasticbody. Alltheelasticproblemscanbeexactlyanalyzedemploying theclassicalMathematicalanalysis,withtheexceptionoftheunilateralproblems forwhichtheemploymentoftheFunctionalanalysisismandatory. TheTheoryofelasticitywasfoundedbythefamousmathematicianCauchyinthe eighteenth-century. Duringitshistoricaldevelopmentthisscienti csectorproposed tothemathematiciansvariousproblemsthathavecontributedorentirelygenerated thedevelopmentofcomplexmathematicaltheories,astheVariationalcalculusand theFiniteelementmethod. Thematteranalyzedinthisbookis -three-dimensional problems (Chap. 1), and particularly the problem of Saint Venant(Chap. 1), -two-dimensionalproblems,aspanels,plates,shells(Chap. 3), -one-dimensionalproblems,asropes,beams,arches(Chap. 4), -thermalstressproblems(Chap. 5), -stabilityproblems(Chap. 6), -anisotropicproblems,thatconstitutethebasictoolfortheanalysisofstructuresin compositematerial(Chap. 7), -nonlinearelasticproblems,as niteelasticityandunilateralproblems(Chap. 8). InthisbookIhaveconstantlykeptinmindthepracticalapplicationoftheth- reticalresults. SoIhavealwaystriedtogivetoengineers,inasimpleform,aclear indicationofthenecessaryfundamentalknowledgeoftheTheoryofelasticity. In thepastsometechniquesofcalculationweredevelopedforparticularelasticpr- lemsthatcannotbeorganizedinmathematicaltheoriesbutareextremelysimpleto apply. Suchtechnicaltheorieshavealwaysfurnishedresultsexperimentallyveri ed v vi Preface withgoodapproximationandthenamongthemIhavepresentedthosethatarestill usefultoolsofveri cationintheStructuraldesign. Throughouttheanalysisoftheelasticproblemsmyconstantfocushasbeento achievethemaximumclarityandbecauseofthisIhavesacri cedvariousbright discussions. Ihavedevelopedthetreatmentofthesubjectsinclassicalway,butto thelightofthemodernMathematicaltheoryoftheelasticityandwithmoreaccented relief to the connections with the Thermodynamics. Just for this, to give a clear justi cationofthefundamentalequationoftheThermoelasticityIhaveapplieda techniqueofanalysisproperoftheFluiddynamics. Howeverinthediscussionof theunilateralproblems,wheretheFunctionalanalysisiscompulsory,Ihaverelated indetailsthemathematicalaspectsofthetheoreticalanalysis. Roma,Italy AldoMaceri October2009 Contents 1 The Three-Dimensional Problem...1 1. 1 AnalysisofStrain...1 1. 1. 1 ComponentsofDisplacement...1 1. 1. 2 In nitesimalDeformation...2 1. 1. 3 ElongationandShearingStrain ...4 1. 1. 4 SmallDeformations...5 1. 1. 5 ComponentsofStrain ...9 1. 1. 6 PrincipalDirectionofStrain ...14 1. 1. 7 InvariantsofStrain ...21 1. 1. 8 PlaneStateofStrain...23 1. 1. 9 EquationsofCompatibility...24 1. 1. 10MeasurementofStrain ...25 1. 2 AnalysisofStress...27 1. 2. 1 StressVector...27 1. 2. 2 NormalStress-ShearingStress ...29 1. 2. 3 ComponentsofStress ...30 1. 2. 4 Symmetryof? -DifferentialEquations ofEquilibrium-Cauchy'sBoundaryConditions...31 1. 2. 5 SymmetryofStressVector...38 1. 2. 6 RelationsBetweenNormalorShearingStress andComponentsofStress...39 1. 2. 7 PrincipalDirectionofStress ...40 1. 2. 8 InvariantsofStress ...42 1. 2. 9 Mohr'sCircle...43 1. 2. 10Mohr'sPrincipalCircles ...57 1. 2. 11 DeterminationoftheMaximumNormalStress orShearingStressbytheMohr'sPrincipalCircles...61 1. 2. 12PlaneStateofStress...63 1. 2. 13UniaxialStateofStress...65 1. 2. 14MeasurementofStress ...66 1. 3 PrincipleofVirtualWorks ...66 1. 3. 1 PrincipleofVirtualWorks ...

Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
ISBN: 9783642423710
Number of pages: 716
Weight: 1098 g
Dimensions: 235 x 155 x 37 mm
Edition: 2010 ed.

You may also be interested in...

Mechanics of Fluids
Added to basket
Schaum's Outline of Strength of Materials
Added to basket
Mechanics of Materials
Added to basket
The Simple Science of Flight
Added to basket
Mechanics
Added to basket
£53.99
Paperback
Magnetism in Condensed Matter
Added to basket
Reinforced Concrete Design
Added to basket
A Dictionary of Chemical Engineering
Added to basket
Thermodynamics DeMYSTiFied
Added to basket
Mechanics of Materials For Dummies
Added to basket
Engineering Mechanics: Dynamics in SI Units
Added to basket
The Oxford Solid State Basics
Added to basket

Please sign in to write a review

Your review has been submitted successfully.