Sets for Mathematics (Hardback)
  • Sets for Mathematics (Hardback)
zoom

Sets for Mathematics (Hardback)

(author), (author)
£125.00
Hardback 276 Pages / Published: 20/01/2003
  • We can order this

Usually dispatched within 3 weeks

  • This item has been added to your basket
Advanced undergraduate or beginning graduate students need a unified foundation for their study of geometry, analysis, and algebra. This book, first published in 2003, uses categorical algebra to build such a foundation, starting from intuitive descriptions of mathematically and physically common phenomena and advancing to a precise specification of the nature of Categories of Sets. Set theory as the algebra of mappings is introduced and developed as a unifying basis for advanced mathematical subjects such as algebra, geometry, analysis, and combinatorics. The formal study evolves from general axioms which express universal properties of sums, products, mapping sets, and natural number recursion. The distinctive features of Cantorian abstract sets, as contrasted with the variable and cohesive sets of geometry and analysis, are made explicit and taken as special axioms. Functor categories are introduced in order to model the variable sets used in geometry, and to illustrate the failure of the axiom of choice. An appendix provides an explicit introduction to necessary concepts from logic, and an extensive glossary provides a window to the mathematical landscape.

Publisher: Cambridge University Press
ISBN: 9780521804448
Number of pages: 276
Weight: 650 g
Dimensions: 263 x 182 x 21 mm


MEDIA REVIEWS
"...the categorical approach to mathematics has never been presented with greater conviction than it has in this book. The authors show that the use of categories in analyzing the set concept is not only natural, but inevitable." Mathematical Reviews
"To learn set theory this way means not having to relearn it later.... Recommended." Choice

You may also be interested in...

Reviews

Please sign in to write a review

Your review has been submitted successfully.