Replication and Evidence Factors in Observational Studies - Chapman & Hall/CRC Monographs on Statistics and Applied Probability (Hardback)
  • Replication and Evidence Factors in Observational Studies - Chapman & Hall/CRC Monographs on Statistics and Applied Probability (Hardback)
zoom

Replication and Evidence Factors in Observational Studies - Chapman & Hall/CRC Monographs on Statistics and Applied Probability (Hardback)

(author)
£115.00
Hardback 272 Pages
Published: 31/03/2021
  • We can order this from the publisher

UK delivery within 4-5 weeks

  • This item has been added to your basket

Outside of randomized experiments, association does not imply causation, and yet there is nothing defective about our knowledge that smoking causes lung cancer, a conclusion reached in the absence of randomized experimentation with humans. How is that possible? If observed associations do not identify causal effects in observational studies, how can a sequence of such associations become decisive?

Two or more associations may each be susceptible to unmeasured biases, yet not susceptible to the same biases. An observational study has two evidence factors if it provides two comparisons susceptible to different biases that may be combined as if from independent studies of different data by different investigators, despite using the same data twice. If the two factors concur, then they may exhibit greater insensitivity to unmeasured biases than either factor exhibits on its own.

Replication and Evidence Factors in Observational Studies includes four parts:

  • A concise introduction to causal inference, making the book self-contained
  • Practical examples of evidence factors from the health and social sciences with analyses in R
  • The theory of evidence factors
  • Study design with evidence factors

A companion R package evident is available from CRAN.

Publisher: Taylor & Francis Ltd
ISBN: 9780367483883
Number of pages: 272
Weight: 526 g
Dimensions: 234 x 156 mm


MEDIA REVIEWS

"In summary, this book provides clear descriptions to explain analysis of evidence factors in observational studies. In addition, the author also provides the rigorous theory to support the validity of methodologies in this book. For the implementation of methodologies, the author develops a package ‘evidence’, which makes readers reproduce and implement the methods easily. In general, this book is an amazing reference for those who are interested in causal inference or observational studies."- Li Pang Chen, J R Stat Soc Series A. https://doi.org/10.1111/rssa.12837"In short, I certainly consider this to be a valuable addition to my research bookshelf and would be happy to refer it to anyone interested in understanding the driving principles and subtleties of observational studies."-Rajarshi Mukherjee, Biometrics, Vol 77, No.4, 2021"This book is the first to discuss evidence factors and is a valuable contribution. Statisticians working on observational studies would find the book useful. Empirical researchers who conduct observational studies would find Chapters 1-6 useful. I would say the book serves more as a reference than a textbook although the book is as lucidly written as any good textbook…I would strongly recommend publication. The book will be of wide interest to causal inference practitioners." (Ted Westling, University of Massachusetts, Amherst)"This book will be of wide interest to causal inference practitioners." (Joel Greenhouse, Carnegie Mellon University)"This book not only brings much of the discussion around the topic of replicability in causal inference in one place, it does it in a way accessible to most. I would absolutely recommend this book for publication.(i) A big strength is that the book is conscious of the balance it needs to keep among motivating the concept, providing technical exposure and demonstrating the application of the method.(ii) This book is self-contained.(iii) The R codes in the footnotes and more references to specific R packages to implement the methods is a huge plus for the book.(iv) Of course, more on this topic exists that is not covered in the book. This book gives necessary references to papers for curious readers.There is a clear distinction of the focus of chapters through 6 and the latter chapters… While the earlier chapters consider Evidence Factors in Practice, the later chapters are about the Theory of Evidence Factors. This distinction is important to illustrate ideas. It is also nice that the book rounds up the discussion at the end in Chapter 13 with many practical tools…This book not only brings much of the discussion around the topic of replicability in causal inference in one place, it does it in a way accessible to most. I would absolutely recommend this book for publication." (Bikram Karmakar, University of Florida)"Paul Rosenbaum is a gifted expositor of complex statistical concepts and methods. His books on analyzing data from observational studies are not only a pleasure to read and to learn from but are scholarly and erudite in ways that are not typical of writings in statistics…The proposed manuscript is in the same style as Rosenbaum’s earlier books and therefore promises to be popular as a reference for research workers or as a textbook for advanced undergraduate or graduate students, i.e., readers with sufficient statistical maturity. There is a lot of conceptual and technical machinery required to understand and use statistical methods for causal inference. In this book Rosenbaum is taking a step back. His goal is to explicate the informal steps that lead to a consensus about a causal relationship in practice and to provide formal methods for interrogating and weighing evidence from studies to help the scientific community reach consensus about causal relationships. This book will be a valuable addition to the causal inference literature." (Dylan Small, University of Pennsylvania)

"In summary, this book provides clear descriptions to explain analysis of evidence factors in observational studies. In addition, the author also provides the rigorous theory to support the validity of methodologies in this book. For the implementation of methodologies, the author develops a package ‘evident’, which makes readers reproduce and implement the methods easily. In general, this book is an amazing reference for those who are interested in causal inference or observational studies."-Li-Pang Chen in Journal of the Royal Statistical Society Series A, March 2022"(...) the book sets high standards for the analysis of those observational studies that fit within its purview. A wide range of examples and associated data are discussed, all with important public health implications. ... As the author suggests, practically minded readers who skip the detailed mathematics can nevertheless gain important insights by following the motivation, applications and examples. The issues raised and points made are important whenever associations found in observational data are used as a basis for claims of causation..."-John H. Maindonald in International Statistical Review, March 2022"Overall, I consider the book to be a rich resource for introducing this relatively new yet highly impactful area of research. The book is organized into four Sections. … Section II sets the tone for the rest of the book by collecting carefully chosen examples. … Chapter 4 provides five real studies to elicit aspects of evidence factors from a variety of representative examples. … The chapter is supplemented through R codes for the examples covered and hands-on exercises for the interested reader. Concepts are well elucidated through concrete running examples. … Section III of the book lends a mathematically rigorous lens to the intuitions gathered from the data analyses and numerical examples in Section II. … This logic is beautifully explained.”-Rajarshi Mukherjee in Biometrics, June 2021"This book is the first to discuss evidence factors and is a valuable contribution. Statisticians working on observational studies would find the book useful. Empirical researchers who conduct observational studies would find Chapters 1-6 useful. I would say the book serves more as a reference than a textbook although the book is as lucidly written as any good textbook…I would strongly recommend publication. The book will be of wide interest to causal inference practitioners." -Ted Westling, University of Massachusetts, Amherst"This book will be of wide interest to causal inference practitioners." -Joel Greenhouse, Carnegie Mellon University"This book not only brings much of the discussion around the topic of replicability in causal inference in one place, it does it in a way accessible to most. I would absolutely recommend this book for publication. (i) A big strength is that the book is conscious of the balance it needs to keep among motivating the concept, providing technical exposure and demonstrating the application of the method. (ii) This book is self-contained. (iii) The R codes in the footnotes and more references to specific R packages to implement the methods is a huge plus for the book. (iv) Of course, more on this topic exists that is not covered in the book. This book gives necessary references to papers for curious readers. There is a clear distinction of the focus of chapters through 6 and the latter chapters… While the earlier chapters consider Evidence Factors in Practice, the later chapters are about the Theory of Evidence Factors. This distinction is important to illustrate ideas. It is also nice that the book rounds up the discussion at the end in Chapter 13 with many practical tools…This book not only brings much of the discussion around the topic of replicability in causal inference in one place, it does it in a way accessible to most. I would absolutely recommend this book for publication." -Bikram Karmakar, University of Florida"Paul Rosenbaum is a gifted expositor of complex statistical concepts and methods. His books on analyzing data from observational studies are not only a pleasure to read and to learn from but are scholarly and erudite in ways that are not typical of writings in statistics…The proposed manuscript is in the same style as Rosenbaum’s earlier books and therefore promises to be popular as a reference for research workers or as a textbook for advanced undergraduate or graduate students, i.e., readers with sufficient statistical maturity. There is a lot of conceptual and technical machinery required to understand and use statistical methods for causal inference. In this book Rosenbaum is taking a step back. His goal is to explicate the informal steps that lead to a consensus about a causal relationship in practice and to provide formal methods for interrogating and weighing evidence from studies to help the scientific community reach consensus about causal relationships. This book will be a valuable addition to the causal inference literature." -Dylan Small, University of Pennsylvania

You may also be interested in...

Statistics
Added to basket
£31.95
Paperback
The Elements of Statistical Learning
Added to basket
Psychology Statistics For Dummies
Added to basket
How to Use Statistics
Added to basket
Probability
Added to basket
£35.99
Paperback
Risk
Added to basket
£14.99
Paperback
Probability: A Very Short Introduction
Added to basket
Statistics
Added to basket
£48.99
Paperback
Cartoon Guide to Statistics
Added to basket
Probability Models
Added to basket
£29.99
Paperback
Naked Statistics
Added to basket
£13.99
Paperback
The Signal and the Noise
Added to basket
Statistics Done Wrong
Added to basket
Edexcel AS and A Level Modular Mathematics Statistics 1 S1
Added to basket
The Theory That Would Not Die
Added to basket
How to Lie with Statistics
Added to basket

Please sign in to write a review

Your review has been submitted successfully.

env: aptum
branch: