Rational Points on Elliptic Curves - Undergraduate Texts in Mathematics (Hardback)
  • Rational Points on Elliptic Curves - Undergraduate Texts in Mathematics (Hardback)
zoom

Rational Points on Elliptic Curves - Undergraduate Texts in Mathematics (Hardback)

(author), (author)
£40.99
Hardback 332 Pages / Published: 24/06/2015
  • We can order this

Usually dispatched within 3 weeks

  • This item has been added to your basket

The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This volume stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry.

Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of Rational Points on Elliptic Curves. Topics covered include the geometry and group structure of elliptic curves, the Nagell-Lutz theorem describing points of finite order, the Mordell-Weil theorem on the finite generation of the group of rational points, the Thue-Siegel theorem on the finiteness of the set of integer points, theorems on counting points with coordinates in finite fields, Lenstra's elliptic curve factorization algorithm, and a discussion of complex multiplication and the Galois representations associated to torsion points. Additional topics new to the second edition include an introduction to elliptic curve cryptography and a brief discussion of the stunning proof of Fermat's Last Theorem by Wiles et al. via the use of elliptic curves.

Publisher: Springer International Publishing AG
ISBN: 9783319185873
Number of pages: 332
Weight: 6565 g
Dimensions: 235 x 155 x 21 mm
Edition: 2nd ed. 2015


MEDIA REVIEWS

"The two main changes for this edition are a new section on elliptic curve cryptography and an explanation of how elliptic curves played a role in the proof of Fermat's Last Theorem. ... the best place to start learning about elliptic curves." (Fernando Q. Gouvea, MAA Reviews, maa.org, April, 2016)

"The book is an excellent introduction to elliptic curves over the rational numbers and ideal textbook for an undergraduate course. ... This book is highly recommended to students and researches interested in elliptic curves and their applications. It provides a natural step to a more advanced treatment of the subject." (Andrej Dujella, zbMATH 1346.11001, 2016)

You may also be interested in...

Islamic Design
Added to basket
£5.99
Paperback
Platonic and Archimedean Solids
Added to basket
Measurement
Added to basket
£15.95
Paperback
Drawing Geometry
Added to basket
£12.99
Paperback
Euclid's Elements
Added to basket
£31.99
Hardback
Euclid's Window
Added to basket
Finite Element Analysis
Added to basket
Mathematics and Its History
Added to basket
Euclid's Elements
Added to basket
£21.99
Paperback
Mathematical Origami
Added to basket
A Combinatorial Introduction to Topology
Added to basket
Introduction to Topology
Added to basket
Trigonometry For Dummies
Added to basket
Elliptic Tales
Added to basket
£13.99
Paperback

Reviews

Please sign in to write a review

Your review has been submitted successfully.