Visit our Christmas Gift Finder
Quantum Field Theory and Condensed Matter: An Introduction (Hardback)
  • Quantum Field Theory and Condensed Matter: An Introduction (Hardback)
zoom

Quantum Field Theory and Condensed Matter: An Introduction (Hardback)

(author)
£59.99
Hardback 450 Pages / Published: 31/08/2017
  • We can order this

Usually dispatched within 2 weeks

  • This item has been added to your basket
Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm-Pines and Chern-Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.

Publisher: Cambridge University Press
ISBN: 9780521592109
Number of pages: 450
Weight: 1050 g
Dimensions: 254 x 181 x 24 mm


MEDIA REVIEWS
'The study of minimally complicated models is ... central to the field of condensed-matter physics. Those models, and the tools needed to understand them, are the subject of Ramamurti Shankar's new book, Quantum Field Theory and Condensed Matter: An Introduction. What is different about Shankar's text? For one thing, it is shorter [than his competitors]. Accordingly, Shankar's book is less ambitious in its aim and more selective in its content. That makes it both a more introductory text and a friendlier read. It will be a good textbook for a one-semester first-year graduate course.' Mike Stone, Physics Today
'[The book] provides a broad review of many different techniques and models used daily in the theoretical condensed matter community. The presentation is done in a quite individual and elegant way ... the book can be used self-consistently as a source for an advanced statistical mechanics course at the master degree level ... Shankar covers a wide variety of models ranging from the celebrated classical two-dimensional Ising model ... to the XY model and Zq gauge theories, and finally to models developed for the quantum Hall effect such as the Bohm-Pines or Chern-Simons theories. In the middle of the book, there are six chapters giving an extensive survey on the renormalization group theory (a book within a book, as Daniel Arovas wrote) and two self-contained chapters dealing with bosonization. Again, here, these chapters may be used self-consistently in order to teach the material.' Acta Crystallographica Section A: Foundations Advances
'Since the Nobel Prize-winning work of Ken Wilson in the 1970s, quantum field theory has been a fundamental tool in condensed matter theory ... Shankar presents more than enough material for a one- or two-semester course, and the book could be used to teach at a variety of levels. There is a substantial amount of classic material: the Ising model and critical phenomena, the relation of the Feynman path integral to statistical mechanics, and the renormalization group. The text ventures beyond these, with treatments of coherent state path integrals, gauge theories, duality, and bosonization. Topics of great modern importance include Majorana fermions and the quantum Hall effect. It is notable that both the Lagrangian and Hamiltonian forms of lattice models are treated. This clear, authoritative text should be available at any institution where modern condensed matter physics is studied.' M. C. Ogilvie, Choice
'The study of minimally complicated models is ... central to the field of condensed-matter physics. Those models, and the tools needed to understand them, are the subject of Ramamurti Shankar's new book, Quantum Field Theory and Condensed Matter: An Introduction. What is different about Shankar's text? For one thing, it is shorter [than his competitors]. Accordingly, Shankar's book is less ambitious in its aim and more selective in its content. That makes it both a more introductory text and a friendlier read. It will be a good textbook for a one-semester first-year graduate course.' Mike Stone, Physics Today
'[The book] provides a broad review of many different techniques and models used daily in the theoretical condensed matter community. The presentation is done in a quite individual and elegant way ... the book can be used self-consistently as a source for an advanced statistical mechanics course at the master degree level ... Shankar covers a wide variety of models ranging from the celebrated classical two-dimensional Ising model ... to the XY model and Zq gauge theories, and finally to models developed for the quantum Hall effect such as the Bohm-Pines or Chern-Simons theories. In the middle of the book, there are six chapters giving an extensive survey on the renormalization group theory (a book within a book, as Daniel Arovas wrote) and two self-contained chapters dealing with bosonization. Again, here, these chapters may be used self-consistently in order to teach the material.' Acta Crystallographica Section A: Foundations Advances
'Since the Nobel Prize-winning work of Ken Wilson in the 1970s, quantum field theory has been a fundamental tool in condensed matter theory ... Shankar presents more than enough material for a one- or two-semester course, and the book could be used to teach at a variety of levels. There is a substantial amount of classic material: the Ising model and critical phenomena, the relation of the Feynman path integral to statistical mechanics, and the renormalization group. The text ventures beyond these, with treatments of coherent state path integrals, gauge theories, duality, and bosonization. Topics of great modern importance include Majorana fermions and the quantum Hall effect. It is notable that both the Lagrangian and Hamiltonian forms of lattice models are treated. This clear, authoritative text should be available at any institution where modern condensed matter physics is studied.' M. C. Ogilvie, Choice

You may also be interested in...

Renormalization Methods
Added to basket
Drilling Down
Added to basket
£22.99
Paperback
Statistical Mechanics
Added to basket
Concepts in Thermal Physics
Added to basket
Evolution of Networks
Added to basket
Measurements and their Uncertainties
Added to basket
Statistical Physics
Added to basket
Data Analysis
Added to basket
£31.99
Paperback
Statistical Mechanics
Added to basket
A First Course in String Theory
Added to basket
Quantum Mechanics
Added to basket

Please sign in to write a review

Your review has been submitted successfully.