• Sign In / Register
  • Help
  • Basket0
Predictive Modular Neural Networks: Applications to Time Series - The Springer International Series in Engineering and Computer Science 466 (Paperback)
  • Predictive Modular Neural Networks: Applications to Time Series - The Springer International Series in Engineering and Computer Science 466 (Paperback)
zoom

Predictive Modular Neural Networks: Applications to Time Series - The Springer International Series in Engineering and Computer Science 466 (Paperback)

(author), (author)
£99.99
Paperback 314 Pages / Published: 11/10/2012
  • We can order this

Usually despatched within 3 weeks

  • This item has been added to your basket
The subject of this book is predictive modular neural networks and their ap- plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several "subnetworks" (modules), which may perform the same or re- lated tasks, and then use an "appropriate" method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of "lumped" or "monolithic" networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network.

Publisher: Springer-Verlag New York Inc.
ISBN: 9781461375401
Number of pages: 314
Weight: 510 g
Dimensions: 235 x 155 x 17 mm
Edition: Softcover reprint of the original 1st ed. 199

You may also be interested in...

A First Course in Network Theory
Added to basket
Statistical Mechanics
Added to basket
Concepts in Thermal Physics
Added to basket
Data Analysis
Added to basket
£30.99
Paperback
Networks
Added to basket
£48.99
Hardback
Renormalization Methods
Added to basket
Quantum Mechanics
Added to basket
Quantum Mechanics
Added to basket
£54.99
Hardback
Measurements and their Uncertainties
Added to basket
A First Course in String Theory
Added to basket
Mathematics for Physics
Added to basket
Evolution of Networks
Added to basket

Reviews

Please sign in to write a review

Your review has been submitted successfully.