• Sign In / Register
  • Help
  • Basket0
Noisy Optimization With Evolution Strategies - Genetic Algorithms and Evolutionary Computation 8 (Paperback)
  • Noisy Optimization With Evolution Strategies - Genetic Algorithms and Evolutionary Computation 8 (Paperback)
zoom

Noisy Optimization With Evolution Strategies - Genetic Algorithms and Evolutionary Computation 8 (Paperback)

(author)
£135.00
Paperback 158 Pages / Published: 24/10/2012
  • We can order this

Usually despatched within 3 weeks

  • This item has been added to your basket

Noise is a common factor in most real-world optimization problems. Sources of noise can include physical measurement limitations, stochastic simulation models, incomplete sampling of large spaces, and human-computer interaction. Evolutionary algorithms are general, nature-inspired heuristics for numerical search and optimization that are frequently observed to be particularly robust with regard to the effects of noise.

Noisy Optimization with Evolution Strategies contributes to the understanding of evolutionary optimization in the presence of noise by investigating the performance of evolution strategies, a type of evolutionary algorithm frequently employed for solving real-valued optimization problems. By considering simple noisy environments, results are obtained that describe how the performance of the strategies scales with both parameters of the problem and of the strategies considered. Such scaling laws allow for comparisons of different strategy variants, for tuning evolution strategies for maximum performance, and they offer insights and an understanding of the behavior of the strategies that go beyond what can be learned from mere experimentation.

This first comprehensive work on noisy optimization with evolution strategies investigates the effects of systematic fitness overvaluation, the benefits of distributed populations, and the potential of genetic repair for optimization in the presence of noise. The relative robustness of evolution strategies is confirmed in a comparison with other direct search algorithms.

Noisy Optimization with Evolution Strategies is an invaluable resource for researchers and practitioners of evolutionary algorithms.

Publisher: Springer-Verlag New York Inc.
ISBN: 9781461353973
Number of pages: 158
Weight: 272 g
Dimensions: 235 x 155 x 9 mm
Edition: Softcover reprint of the original 1st ed. 200


MEDIA REVIEWS

From the reviews:

"[...]a highly interesting book recommendable to anyone interested in evolutionary optimization and to those facing noisy optimization problems."
(Hans-Georg Beyer)

"The book addresses one of the most pressing and interesting topics in evolutionary computation research - the performance of evolutional algorithms in uncertain environments ... . Summing up, the book appears to be an interesting theoretical complement to many existing books describing practical applications of evolutionary computations." (Jacek Blazewicz, Zentralblatt MATH, Vol. 1103 (5), 2007)

You may also be interested in...

Machine Learning
Added to basket
£42.50
Paperback
Understanding Beliefs
Added to basket
Thoughtful Machine Learning
Added to basket
Practical Augmented Reality
Added to basket
Superintelligence
Added to basket
£18.99
Hardback
Bayesian Reasoning and Machine Learning
Added to basket
Reinforcement Learning
Added to basket
Emotion: A Very Short Introduction
Added to basket
The Elements of Statistical Learning
Added to basket
Dark Pools
Added to basket
£9.99
Paperback
Machine Learning
Added to basket
Introducing Artificial Intelligence
Added to basket
The Singularity is Near
Added to basket

Reviews

Please sign in to write a review

Your review has been submitted successfully.