Visit our Christmas Gift Finder
Modern Data Science with R - Chapman & Hall/CRC Texts in Statistical Science (Hardback)
  • Modern Data Science with R - Chapman & Hall/CRC Texts in Statistical Science (Hardback)
zoom

Modern Data Science with R - Chapman & Hall/CRC Texts in Statistical Science (Hardback)

(author), (author), (author)
£63.99
Hardback 556 Pages / Published: 02/02/2017
  • Publisher out of stock

Currently unavailable to order

This product is currently unavailable.

  • This item has been added to your basket

Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world problems with data. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling statistical questions.

Contemporary data science requires a tight integration of knowledge from statistics, computer science, mathematics, and a domain of application. This book will help readers with some background in statistics and modest prior experience with coding develop and practice the appropriate skills to tackle complex data science projects. The book features a number of exercises and has a flexible organization conducive to teaching a variety of semester courses.

Publisher: Taylor & Francis Inc
ISBN: 9781498724487
Number of pages: 556
Weight: 1382 g
Dimensions: 254 x 178 x 33 mm


MEDIA REVIEWS

"Only about 60 of the book's 551 pages address the questions of uncertainty and inference that constitute the core of the statistics tradition. The remaining pages attend the other components of working with data-the import, wrangling, tidying, visualization, and storage-that are often the more prominent barriers to understanding modern datasets...Modern Data Science with R is a landmark: the first full textbook in data science. (It can serve) as the backbone of a semester-long course targeted at students with little background in statistics or computing. It is rich with examples and is guided by a strong narrative voice. What's more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics...By using the tidyverse, the textbook authors are able to seamlessly interweave a conceptual framework for data science with the corresponding implementation in R code....Even though this book is heavily dependent on R, readers come away with a more general natural language with which to talk and think about data. Indeed, if R were to cease to exist tomorrow, these readers would still be well-situated to be data scientists. In a nutshell, that approach is what makes this such a successful textbook." ~The American Statistician

"Baumer, Kaplan, and Horton have managed to write a book that will serve a huge variety of educators while being endlessly interesting and useful to students of a modern era. Modern Data Science in R is a compilation of ideas from both ends of the data science and statistics spectrum-tools for setting up databases and working with regular expressions are intermixed with fundamentals like regression analysis. Additionally, the authors pull together fantastic examples from the scientific community as well as the media at large. Their examples will engage today's students into understanding why data wrangling, reproducibility, and ethics are a fundamental part of any data analysis.

Good visualization skills (Tukey) and ethical analyses (Hoff, "How to Lie with Statistics") are not new ideas. However, they have recently been lost in the drive for more sophisticated mathematical and computational methods for working with data. Baumer et al. modernize the need for good visualization and communication in ways that will resonate with today's practitioners. Like Wickham's "ggplot2" and "The Elements of Statistical Learning" by Hastie et al., "Modern Data Science in R" promises to be a staple on every data analyst's bookshelf. Accessible to students and a valuable resource for those who have been in the field for many years, this book promises to be a treasure you will want to discover." ~ Jo Hardin, Pomona College


"This book would be an excellent text book for an introductory data science course. Many academic institutions are now trying to open data science programs. But, there is not a good text book available for data science courses." ~ Mahbubul Majumder, U. of Nebraska Omaha

"The book is unique. It is an encyclopedia of Data Science, and it covers a wide variety of modern topics; another positive aspect is that it contains lots of examples and code, and the layout is quite catchy. One can learn (and teach) subjects as diverse as: How to give talks, administrating databases, how to model spatial data, and even ethics---all in one book." ~ Miguel de Carvalho, The University of Edinburgh

"It would undoubtedly be useful to many postgraduate students of applied statistics. The handbook style will also be of use to statisticians who want to keep up to date in this area. In particular the book utilizes functions from many different R packages, and will be helpful for data analysts to keep their R skills up to date. Although one of the appendices covers an introduction to R (R Core Team 2017) and RStudio (RStudio Team 2017), realistically it is expected that the reader has some experience with R. Existing R users with no experience of RStudio might find the appendix useful, but RStudio is not required to work through this book. Overall the book is well written, well structured and the general writing style is both objective and entertaining . . . The book is divided into three major parts, Introduction to Data Science, Statistics and Modeling, and Topics in Data Science, followed by six appendices . . . In conclusion, I recommend this book as a course companion to a master's level course in data analysis and to statisticians who want to keep their skills in the field of data science up to date." ~ Tim Downie, Journal of Statistical Software

"Modern Data Science with R is different . . .as it presents an abundance of R codes, functions and packages clearly with several useful examples. For people with a statistical background, the book covers computational topics like simulation and also includes appropriate computer science topics such as Data Wrangling, Database Querying using SQL and Text as Data. The book is well-structured and is presented in an easy-to-understand manner, making it suitable for a wide range of readers. . . This book is unique because it incorporates theoretical fundamentals such as statistical learning and regression modelling with the modern, practical elements of data science, including setting up databases and debugging . . . This book is a valuable resource to all those studying and interested in data science."
~Shuangzhe Liu, University of Canberra

You may also be interested in...

Data Analysis Using SQL and Excel
Added to basket
Think Stats 2e
Added to basket
£27.99
Paperback
Data Wrangling with Python
Added to basket
The Data Warehouse Toolkit
Added to basket
Agile Data Warehouse Design
Added to basket
Big Data For Dummies
Added to basket
Data Science for Business
Added to basket
Coding For Kids For Dummies
Added to basket
PHP and MySQL Web Development
Added to basket
VBA For Dummies
Added to basket
Doing Data Science
Added to basket
£35.99
Paperback
T-SQL Querying
Added to basket
£44.49
Paperback
Designing Data-Intensive Applications
Added to basket

Please sign in to write a review

Your review has been submitted successfully.