Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow - Advances in Mathematical Fluid Mechanics (Hardback)
  • Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow - Advances in Mathematical Fluid Mechanics (Hardback)
zoom

Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow - Advances in Mathematical Fluid Mechanics (Hardback)

(author), (author)
£99.99
Hardback 569 Pages / Published: 04/12/2013
  • We can order this

Usually dispatched within 3 weeks

  • This item has been added to your basket

The theory of incompressible multipolar viscous fluids is a non-Newtonian model of fluid flow, which incorporates nonlinear viscosity, as well as higher order velocity gradients, and is based on scientific first principles. The Navier-Stokes model of fluid flow is based on the Stokes hypothesis, which a priori simplifies and restricts the relationship between the stress tensor and the velocity. By relaxing the constraints of the Stokes hypothesis, the mathematical theory of multipolar viscous fluids generalizes the standard Navier-Stokes model. The rigorous theory of multipolar viscous fluids is compatible with all known thermodynamical processes and the principle of material frame indifference; this is in contrast with the formulation of most non-Newtonian fluid flow models which result from ad hoc assumptions about the relation between the stress tensor and the velocity. The higher-order boundary conditions, which must be formulated for multipolar viscous flow problems, are a rigorous consequence of the principle of virtual work; this is in stark contrast to the approach employed by authors who have studied the regularizing effects of adding artificial viscosity, in the form of higher order spatial derivatives, to the Navier-Stokes model.

A number of research groups, primarily in the United States, Germany, Eastern Europe, and China, have explored the consequences of multipolar viscous fluid models; these efforts, and those of the authors, which are described in this book, have focused on the solution of problems in the context of specific geometries, on the existence of weak and classical solutions, and on dynamical systems aspects of the theory.

This volume will be a valuable resource for mathematicians interested in solutions to systems of nonlinear partial differential equations, as well as to applied mathematicians, fluid dynamicists, and mechanical engineers with an interest in the problems of fluid mechanics.

Publisher: Birkhauser
ISBN: 9783319008905
Number of pages: 569
Weight: 1045 g
Dimensions: 235 x 155 x 31 mm
Edition: 2014 ed.


MEDIA REVIEWS

From the book reviews:

"The authors present some results obtained on incompressible nonlinear bipolar fluid flows. The book contains six chapters and three appendices. ... This book will be a valuable resource for applied mathematicians, fluid dynamicists and engineers with an interest in non-Newtonian fluid mechanics." (Valeriu Al. Sava, zbMATH, Vol. 1291, 2014)

You may also be interested in...

Quantum Mechanics
Added to basket
Group Theory
Added to basket
£59.99
Hardback
The Wonderful World of Relativity
Added to basket
The Physics of Quantum Mechanics
Added to basket
Partial Differential Equations
Added to basket
The Language of Physics
Added to basket
Einstein's Physics
Added to basket
£32.99
Hardback
Inside Interesting Integrals
Added to basket
Mathematics for Physicists
Added to basket
Schroedinger Operators
Added to basket
Tensor Calculus for Physics
Added to basket
A Student's Guide to Fourier Transforms
Added to basket
A Student's Guide to Waves
Added to basket
Mathematical Methods in Engineering
Added to basket

Reviews

Please sign in to write a review

Your review has been submitted successfully.