• Sign In / Register
  • Help
  • Basket0
Fuzzy Cognitive Maps for Applied Sciences and Engineering: From Fundamentals to Extensions and Learning Algorithms - Intelligent Systems Reference Library 54 (Paperback)
  • Fuzzy Cognitive Maps for Applied Sciences and Engineering: From Fundamentals to Extensions and Learning Algorithms - Intelligent Systems Reference Library 54 (Paperback)
zoom

Fuzzy Cognitive Maps for Applied Sciences and Engineering: From Fundamentals to Extensions and Learning Algorithms - Intelligent Systems Reference Library 54 (Paperback)

(editor)
£117.00
Paperback 395 Pages / Published: 30/04/2017
  • We can order this

Usually despatched within 3 weeks

  • This item has been added to your basket

Fuzzy Cognitive Maps (FCM) constitute cognitive models in the form of fuzzy directed graphs consisting of two basic elements: the nodes, which basically correspond to "concepts" bearing different states of activation depending on the knowledge they represent, and the "edges" denoting the causal effects that each source node exercises on the receiving concept expressed through weights. Weights take values in the interval [-1,1], which denotes the positive, negative or neutral causal relationship between two concepts. An FCM can be typically obtained through linguistic terms, inherent to fuzzy systems, but with a structure similar to the neural networks, which facilitates data processing, and has capabilities for training and adaptation.

During the last 10 years, an exponential growth of published papers in FCMs was followed showing great impact potential. Different FCM structures and learning schemes have been developed, while numerous studies report their use in many contexts with highly successful modeling results.

The aim of this book is to fill the existing gap in the literature concerning fundamentals, models, extensions and learning algorithms for FCMs in knowledge engineering. It comprehensively covers the state-of-the-art FCM modeling and learning methods, with algorithms, codes and software tools, and provides a set of applications that demonstrate their various usages in applied sciences and engineering.

Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
ISBN: 9783662522141
Number of pages: 395
Weight: 869 g
Dimensions: 235 x 155 x 22 mm
Edition: Softcover reprint of the original 1st ed. 201

You may also be interested in...

Dark Pools
Added to basket
£9.99
Paperback
Machine Learning
Added to basket
£39.99
Paperback
Reinforcement Learning
Added to basket
Bayesian Reasoning and Machine Learning
Added to basket
Machine Learning
Added to basket
£42.50
Paperback
The Singularity is Near
Added to basket
Probabilistic Graphical Models
Added to basket
Machine Learning for Hackers
Added to basket
Emotion: A Very Short Introduction
Added to basket
Darwin Among the Machines
Added to basket
Probabilistic Robotics
Added to basket
Understanding Beliefs
Added to basket
The Elements of Statistical Learning
Added to basket
Thoughtful Machine Learning
Added to basket

Reviews

Please sign in to write a review

Your review has been submitted successfully.