Dynamic Prediction in Clinical Survival Analysis - Chapman & Hall/CRC Monographs on Statistics and Applied Probability (Hardback)
  • Dynamic Prediction in Clinical Survival Analysis - Chapman & Hall/CRC Monographs on Statistics and Applied Probability (Hardback)
zoom

Dynamic Prediction in Clinical Survival Analysis - Chapman & Hall/CRC Monographs on Statistics and Applied Probability (Hardback)

(author), (author)
£83.99
Hardback 250 Pages / Published: 09/11/2011
  • We can order this

Usually dispatched within 3 weeks

  • This item has been added to your basket

There is a huge amount of literature on statistical models for the prediction of survival after diagnosis of a wide range of diseases like cancer, cardiovascular disease, and chronic kidney disease. Current practice is to use prediction models based on the Cox proportional hazards model and to present those as static models for remaining lifetime after diagnosis or treatment. In contrast, Dynamic Prediction in Clinical Survival Analysis focuses on dynamic models for the remaining lifetime at later points in time, for instance using landmark models.

Designed to be useful to applied statisticians and clinical epidemiologists, each chapter in the book has a practical focus on the issues of working with real life data. Chapters conclude with additional material either on the interpretation of the models, alternative models, or theoretical background. The book consists of four parts:

Part I deals with prognostic models for survival data using (clinical) information available at baseline, based on the Cox modelPart II is about prognostic models for survival data using (clinical) information available at baseline, when the proportional hazards assumption of the Cox model is violatedPart III is dedicated to the use of time-dependent information in dynamic predictionPart IV explores dynamic prediction models for survival data using genomic data

Dynamic Prediction in Clinical Survival Analysis summarizes cutting-edge research on the dynamic use of predictive models with traditional and new approaches. Aimed at applied statisticians who actively analyze clinical data in collaboration with clinicians, the analyses of the different data sets throughout the book demonstrate how predictive models can be obtained from proper data sets.

Publisher: Taylor & Francis Inc
ISBN: 9781439835333
Number of pages: 250
Weight: 635 g
Dimensions: 254 x 178 x 13 mm


MEDIA REVIEWS

"It offers several original viewpoints that make it a worthwhile addition to the literature. ... For the researcher wishing to gain knowledge of survival analysis beyond that of standard introductions, this is an excellent book. It contains a lot of very useful procedures and demonstrates them in practical applications on real data from the authors' own experience. The datasets are described in Appendix A and most of the data are available from the package dynpred (Appendix B), which also contains suitable software. On the book's website one may find R code for each chapter in the book; this is a highly useful feature. Output and plots are also available, which makes the book useful for teaching purposes."
-Odd O. Aalen, Journal of the American Statistical Association, September 2014, Vol. 109

You may also be interested in...

Discovering Statistics Using R
Added to basket
The BUGS Book
Added to basket
R in Action
Added to basket
£36.99
Paperback
MATLAB Primer
Added to basket
£19.99
Paperback
The Manga Guide To Statistics
Added to basket
A Beginner's Guide to R
Added to basket
Discovering Statistics Using R
Added to basket
£72.00
Mixed media product
The R Book
Added to basket
£68.00
Hardback
R Cookbook
Added to basket
£39.99
Paperback
SPSS Explained
Added to basket
£36.99
Paperback
MATLAB Demystified
Added to basket
£21.99
Paperback
SPSS Statistics for Dummies
Added to basket
Molecular Evolution
Added to basket
£48.99
Paperback
IBM SPSS Statistics 19 Made Simple
Added to basket
Statistics
Added to basket
£30.75
Paperback
Beginning R
Added to basket
£26.99
Paperback

Please sign in to write a review

Your review has been submitted successfully.