Connectionist Speech Recognition: A Hybrid Approach - The Springer International Series in Engineering and Computer Science 247 (Paperback)
  • Connectionist Speech Recognition: A Hybrid Approach - The Springer International Series in Engineering and Computer Science 247 (Paperback)
zoom

Connectionist Speech Recognition: A Hybrid Approach - The Springer International Series in Engineering and Computer Science 247 (Paperback)

(author), (author)
£149.99
Paperback 313 Pages / Published: 15/12/2012
  • We can order this

Usually dispatched within 3 weeks

  • This item has been added to your basket
Connectionist Speech Recognition: A Hybrid Approach describes the theory and implementation of a method to incorporate neural network approaches into state of the art continuous speech recognition systems based on hidden Markov models (HMMs) to improve their performance. In this framework, neural networks (and in particular, multilayer perceptrons or MLPs) have been restricted to well-defined subtasks of the whole system, i.e. HMM emission probability estimation and feature extraction.
The book describes a successful five-year international collaboration between the authors. The lessons learned form a case study that demonstrates how hybrid systems can be developed to combine neural networks with more traditional statistical approaches. The book illustrates both the advantages and limitations of neural networks in the framework of a statistical systems.
Using standard databases and comparison with some conventional approaches, it is shown that MLP probability estimation can improve recognition performance. Other approaches are discussed, though there is no such unequivocal experimental result for these methods.
Connectionist Speech Recognition is of use to anyone intending to use neural networks for speech recognition or within the framework provided by an existing successful statistical approach. This includes research and development groups working in the field of speech recognition, both with standard and neural network approaches, as well as other pattern recognition and/or neural network researchers. The book is also suitable as a text for advanced courses on neural networks or speech processing.

Publisher: Springer-Verlag New York Inc.
ISBN: 9781461364092
Number of pages: 313
Weight: 534 g
Dimensions: 235 x 155 x 18 mm
Edition: Softcover reprint of the original 1st ed. 199

You may also be interested in...

Please sign in to write a review

Your review has been submitted successfully.