Complex Analysis, Riemann Surfaces and Integrable Systems - Moscow Lectures 3 (Hardback)
  • Complex Analysis, Riemann Surfaces and Integrable Systems - Moscow Lectures 3 (Hardback)

Complex Analysis, Riemann Surfaces and Integrable Systems - Moscow Lectures 3 (Hardback)

(author), (translator)
Hardback 139 Pages / Published: 30/01/2020
  • Temporarily unavailable

Currently unavailable

Email me when available

Stay one step ahead and let us notify you when this item is next available to order

This book is devoted to classical and modern achievements in complex analysis. In order to benefit most from it, a first-year university background is sufficient; all other statements and proofs are provided.

We begin with a brief but fairly complete course on the theory of holomorphic, meromorphic, and harmonic functions. We then present a uniformization theory, and discuss a representation of the moduli space of Riemann surfaces of a fixed topological type as a factor space of a contracted space by a discrete group. Next, we consider compact Riemann surfaces and prove the classical theorems of Riemann-Roch, Abel, Weierstrass, etc. We also construct theta functions that are very important for a range of applications.

After that, we turn to modern applications of this theory. First, we build the (important for mathematics and mathematical physics) Kadomtsev-Petviashvili hierarchy and use validated results to arrive at important solutions to these differential equations. We subsequently use the theory of harmonic functions and the theory of differential hierarchies to explicitly construct a conformal mapping that translates an arbitrary contractible domain into a standard disk - a classical problem that has important applications in hydrodynamics, gas dynamics, etc.

The book is based on numerous lecture courses given by the author at the Independent University of Moscow and at the Mathematics Department of the Higher School of Economics.

Publisher: Springer Nature Switzerland AG
ISBN: 9783030346393
Number of pages: 139
Weight: 454 g
Dimensions: 235 x 155 mm
Edition: 1st ed. 2019

You may also be interested in...

No Bullshit Guide to Math and Physics
Added to basket
All of Statistics
Added to basket
Quick Calculus
Added to basket
Schaums Outline of Tensor Calculus
Added to basket
Measurements and their Uncertainties
Added to basket
Visual Complex Analysis
Added to basket
The Calculus Lifesaver
Added to basket
Fourier Analysis
Added to basket
A Brief Guide to the Great Equations
Added to basket
Introduction to Real Analysis
Added to basket

Please sign in to write a review

Your review has been submitted successfully.