Big Data Analytics: A Practical Guide for Managers (Hardback)
  • Big Data Analytics: A Practical Guide for Managers (Hardback)

Big Data Analytics: A Practical Guide for Managers (Hardback)

(author), (author)
Hardback 576 Pages / Published: 05/02/2015
  • We can order this

Usually dispatched within 3 weeks

  • This item has been added to your basket

With this book, managers and decision makers are given the tools to make more informed decisions about big data purchasing initiatives. Big Data Analytics: A Practical Guide for Managers not only supplies descriptions of common tools, but also surveys the various products and vendors that supply the big data market.

Comparing and contrasting the different types of analysis commonly conducted with big data, this accessible reference presents clear-cut explanations of the general workings of big data tools. Instead of spending time on HOW to install specific packages, it focuses on the reasons WHY readers would install a given package.

The book provides authoritative guidance on a range of tools, including open source and proprietary systems. It details the strengths and weaknesses of incorporating big data analysis into decision-making and explains how to leverage the strengths while mitigating the weaknesses.

Describes the benefits of distributed computing in simple termsIncludes substantial vendor/tool material, especially for open source decisionsCovers prominent software packages, including Hadoop and Oracle EndecaExamines GIS and machine learning applicationsConsiders privacy and surveillance issues

The book further explores basic statistical concepts that, when misapplied, can be the source of errors. Time and again, big data is treated as an oracle that discovers results nobody would have imagined. While big data can serve this valuable function, all too often these results are incorrect, yet are still reported unquestioningly. The probability of having erroneous results increases as a larger number of variables are compared unless preventative measures are taken.

The approach taken by the authors is to explain these concepts so managers can ask better questions of their analysts and vendors as to the appropriateness of the methods used to arrive at a conclusion. Because the world of science and medicine has been grappling with similar issues in the publication of studies, the authors draw on their efforts and apply them to big data.

Publisher: Apple Academic Press Inc.
ISBN: 9781482234510
Number of pages: 576
Weight: 1043 g
Dimensions: 235 x 156 x 35 mm

You may also be interested in...

Data Science at the Command Line
Added to basket
Think Stats 2e
Added to basket
Data Analysis Using SQL and Excel
Added to basket
Using Flume
Added to basket
The Data Warehouse Toolkit
Added to basket
Getting Started with Data Science
Added to basket
Data Wrangling with Python
Added to basket

Please sign in to write a review

Your review has been submitted successfully.