Artificial Intelligence Techniques for Rational Decision Making - Advanced Information and Knowledge Processing (Hardback)
  • Artificial Intelligence Techniques for Rational Decision Making - Advanced Information and Knowledge Processing (Hardback)
zoom

Artificial Intelligence Techniques for Rational Decision Making - Advanced Information and Knowledge Processing (Hardback)

(author)
£74.99
Hardback 168 Pages / Published: 03/11/2014
  • We can order this

Usually dispatched within 3 weeks

  • This item has been added to your basket

Develops insights into solving complex problems in engineering, biomedical sciences, social science and economics based on artificial intelligence. Some of the problems studied are in interstate conflict, credit scoring, breast cancer diagnosis, condition monitoring, wine testing, image processing and optical character recognition. The author discusses and applies the concept of flexibly-bounded rationality which prescribes that the bounds in Nobel Laureate Herbert Simon's bounded rationality theory are flexible due to advanced signal processing techniques, Moore's Law and artificial intelligence.

Artificial Intelligence Techniques for Rational Decision Making examines and defines the concepts of causal and correlation machines and applies the transmission theory of causality as a defining factor that distinguishes causality from correlation. It develops the theory of rational counterfactuals which are defined as counterfactuals that are intended to maximize the attainment of a particular goal within the context of a bounded rational decision making process. Furthermore, it studies four methods for dealing with irrelevant information in decision making:

Theory of the marginalization of irrelevant information Principal component analysis Independent component analysisAutomatic relevance determination method

In addition it studies the concept of group decision making and various ways of effecting group decision making within the context of artificial intelligence.

Rich in methods of artificial intelligence including rough sets, neural networks, support vector machines, genetic algorithms, particle swarm optimization, simulated annealing, incremental learning and fuzzy networks, this book will be welcomed by researchers and students working in these areas.

Publisher: Springer International Publishing AG
ISBN: 9783319114231
Number of pages: 168
Weight: 4026 g
Dimensions: 235 x 155 x 13 mm
Edition: 2014 ed.


MEDIA REVIEWS

"Each chapter introduces a topic, discusses the theory for implementing it, and then describes a use case and the results of its application. ... This is an important book. ... Copious references, several pages per chapter, provide voluminous background material for the curious reader." (G. R. Mayforth, Computing Reviews, December, 2015)

You may also be interested in...

Machine Learning for Hackers
Added to basket
Understanding Beliefs
Added to basket
Emotion: A Very Short Introduction
Added to basket
Machine Learning
Added to basket
£42.50
Paperback
Dark Pools
Added to basket
£9.99
Paperback
Computer Vision
Added to basket
Reinforcement Learning
Added to basket
The Singularity Is Near
Added to basket
Machine Learning
Added to basket
£39.99
Paperback
AI for Game Developers
Added to basket
Introducing Artificial Intelligence
Added to basket
The Quest for Artificial Intelligence
Added to basket
The Elements of Statistical Learning
Added to basket
Artificial Intelligence: The Basics
Added to basket

Reviews

Please sign in to write a review

Your review has been submitted successfully.