• Sign In
  • Help
  • My Basket0
The books you love, the emails you want
Opt in by 25 May or you'll stop hearing from us
REVIEW NOW
An Introduction to Wavelet Analysis - Applied and Numerical Harmonic Analysis (Hardback)
  • An Introduction to Wavelet Analysis - Applied and Numerical Harmonic Analysis (Hardback)
zoom

An Introduction to Wavelet Analysis - Applied and Numerical Harmonic Analysis (Hardback)

(author)
£53.99
Hardback 452 Pages / Published: 27/01/2004
  • We can order this

Usually despatched within 3 weeks

  • This item has been added to your basket

Check Marketplace availability

This book provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and analysis of wavelet bases. It motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, then shows how a more abstract approach allows readers to generalize and improve upon the Haar series. It then presents a number of variations and extensions of Haar construction.

Publisher: Birkhauser Boston Inc
ISBN: 9780817639624
Number of pages: 452
Weight: 1840 g
Dimensions: 234 x 156 x 25 mm
Edition: 1st Corrected ed. 2004. Corr. 2nd printing 20


MEDIA REVIEWS

"[This text] is carefully prepared, well-organized, and covers a large part of the central theory . . . [there are] chapters on biorthogonal wavelets and wavelet packets, topics which are rare in wavelet books. Both are important, and this feature is an extra argument in favour of [this] book . . . the material is accessible [even] to less advanced readers . . . the book is a nice addition to the series." -Zentralblatt Math

"This book can be recommended to everyone, especially to students looking for a detailed introduction to the subject." -Mathematical Reviews

"This textbook is an introduction to the mathematical theory of wavelet analysis at the level of advanced calculus. Some applications are described, but the main purpose of the book is to develop-using only tools from a first course in advanced calculus-a solid foundation in wavelet theory. It succeeds admirably. . . . Part I of the book contains 112 pages of preliminary material, consisting of four chapters on `Functions and Convergence,' `Fourier Series,' `Fourier Transforms,' and `Signals and Systems.' . . . This preliminary material is so well written that it could serve as an excellent supplement to a first course in advanced calculus. . . . The heart of the book is Part III: `Orthonormal Wavelet bases.' This material has become the canonical portion of wavelet theory. Walnut does a first-rate job explaining the ideas here. . . . Ample references are supplied to aid the reader. . . . There are exercises at the end of each section, 170 in all, and they seem to be consistent with the level of the text. . . . To cover the whole book would require a year. An excellent one-semester course could be based on a selection of chapters from Parts II, III, and V." -SIAM Review

"D. Walnut's lovely book aims at the upper undergraduate level, and so it includes relatively more preliminary material . . . than is typically the case in a graduate text. It goes from Haar systems to multiresolutions, and then the discrete wavelet transform . . . The applications to image compression are wonderful, and the best I have seen in books at this level. I also found the analysis of the best choice of basis, and wavelet packet, especially attractive. The later chapters include MATLAB codes. Highly recommended!" -Bulletin of the AMS

You may also be interested in...

The Calculus Lifesaver
Added to basket
Maths for Science
Added to basket
£35.99
Paperback
Calculus
Added to basket
£39.99
Hardback
Fundamentals of Mathematical Analysis
Added to basket
Calculus for the Ambitious
Added to basket
A Brief on Tensor Analysis
Added to basket
Maths for Chemistry
Added to basket
£29.99
Paperback
The Cartoon Guide to Calculus
Added to basket
Calculus Essentials for Dummies
Added to basket
Stochastic Differential Equations
Added to basket

Reviews

Please sign in to write a review

Your review has been submitted successfully.