Visit our Christmas Gift Finder
Click & Collect from 2 Hours
Last Christmas Delivery Dates
Free UK Standard Delivery on orders £20 and over Order in time for Christmas 18th December 2nd Class | 19th December 1st Class Free Click & Collect to shops From 2 hours of your order*
A Generative Theory of Relevance - The Information Retrieval Series 26 (Hardback)
  • A Generative Theory of Relevance - The Information Retrieval Series 26 (Hardback)

A Generative Theory of Relevance - The Information Retrieval Series 26 (Hardback)

Hardback 197 Pages / Published: 25/11/2008
  • We can order this

Usually dispatched within 3 weeks

  • This item has been added to your basket

A modern information retrieval system must have the capability to find, organize and present very different manifestations of information - such as text, pictures, videos or database records - any of which may be of relevance to the user. However, the concept of relevance, while seemingly intuitive, is actually hard to define, and it's even harder to model in a formal way.

Lavrenko does not attempt to bring forth a new definition of relevance, nor provide arguments as to why any particular definition might be theoretically superior or more complete. Instead, he takes a widely accepted, albeit somewhat conservative definition, makes several assumptions, and from them develops a new probabilistic model that explicitly captures that notion of relevance. With this book, he makes two major contributions to the field of information retrieval: first, a new way to look at topical relevance, complementing the two dominant models, i.e., the classical probabilistic model and the language modeling approach, and which explicitly combines documents, queries, and relevance in a single formalism; second, a new method for modeling exchangeable sequences of discrete random variables which does not make any structural assumptions about the data and which can also handle rare events.

Thus his book is of major interest to researchers and graduate students in information retrieval who specialize in relevance modeling, ranking algorithms, and language modeling.

Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
ISBN: 9783540893639
Number of pages: 197
Weight: 497 g
Dimensions: 235 x 155 x 14 mm
Edition: 2009 ed.


From the reviews:

"Lavrenko introduces a new model of relevance for information retrieval (IR). He introduces a new way of looking at topical relevance with a new way of modeling topical content. ... The book is divided into six chapters. ... The index is adequate ... . The lists of figures and tables in the tables of contents are very useful for quick reference. IR professionals and graduate students are the intended audience ... ." (E. Y. Lee, ACM Computing Reviews, May, 2009)

"The goal of this book is to provide a third alternative to the classical probabilistic model and the language modeling approach. It introduces a model of retrieval that treats relevance as a common generative process underlying both documents and queries. ... To researchers and graduate students the book offers a new way of thinking about relevance, a number of interesting facts about existing models, and some explanations for strange experimental observations." (Antonin Riha, Zentralblatt MATH, Vol. 1168, 2009)

"In `A generative Theory of Relevance', Victor Lavrenko analyzes in depth both the theory and effectiveness of pseudo-relevance feedback. ... The combination and thoroughness of the theoretical and experimental discussions make this book an essential read for both the information retrieval theoretician as well as the practitioner. ... By the end of the book, the reader is comfortable enough with the techniques to apply them to new domains. ... Lavrenko makes nice theoretical and empirical contributions to the state of the art." (Fernando Diaz, Information Retrieval, Vol. 13, 2010)

You may also be interested in...

The Data Warehouse Toolkit
Added to basket
Data Wrangling with Python
Added to basket
Elasticsearch in Action
Added to basket
Pro SQL Server Administration
Added to basket
The Elements of Statistical Learning
Added to basket
Learning Spark
Added to basket
Hadoop For Dummies
Added to basket
PHP and MySQL Web Development
Added to basket
Visualization Analysis and Design
Added to basket
Coding For Kids For Dummies
Added to basket
Creating a Data-Driven Organization
Added to basket
Databases DeMYSTiFieD
Added to basket


Please sign in to write a review

Your review has been submitted successfully.